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Introduction 

 

Absolute range detection has been a long-time objective of studies focused on achieving stereo 

computer vision. Many researchers have attempted to emulate some part of the human stereo 

system, most commonly motion parallax. These attempts, however, have concluded that motion 

parallax is not a reliable source of input for systems attempting range measurements and, in fact, 

often worsens object size and range prediction [1]-[2]. A system with these qualities is needed 

for applications such as the Stanford AI Robot (STAIR), which must be able to maneuver 

through dynamic environments in order to carry out its tasks. 

 

Our approach to tackling the problem of range-detection was two-fold. Our first system replaced 

one of the two cameras in a traditional stereo-vision system with a laser marker. By holding the 

marker and camera fixed while varying the their distance to an object, a training set was 

produced from which any new distance could be inferred. Utilizing this method we found that we 

could achieve reliable (±3%) range estimates at up to 160 feet. 

 

In our second approach, our original objective was to expand upon our first approach to produce 

a system that could provide absolute range for any pixel in a given camera image, not just one at 

a time. Through trial and error we eventually we settled on a fringe projection system put forth 

by Zhang and Yau [3] that allowed us to produce phase maps from which very accurate range 

information can be extracted. 

 

Part I – Camera-Marker System 

 

A single camera image does not provide 

enough information on its own for a robot to 

infer range information. Although it is hard to 

imagine, this is true as well in humans. While 

humans utilize several methods of range 

detection, motion parallax – the ability to see 

how objects shift with respect to eye position – 

requires multiple images. By introducing a laser 

marker in place of a second image capture, we 

essentially reduce the magnitude of the problem 

of implementing a motion parallax in machines 

for full images to one small subset equivalent to 

a point in an image. While this is not ideal in 

practice, it helps us to move in the right 

direction if we find that this method gives 

promising results. 

 

A model for the experiment can be developed 

by considering what happens when we shine a 



laser into the field of view (FOV) of a camera. Assuming the laser and camera are aligned, the 

laser marker at some distance (depth) x enters the camera FOV. Assuming the FOV grows 

linearly with distance, then we can infer that the ratio of the distance between the marker and 

center of the and the marker and the edge of the image will go as the inverse of this relationship. 

Since the image is discretized, the natural interpretation of this ratio is that of pixels per “true” 

area. Naturally, as a camera captures objects that are far away, less pixels are devoted to objects 

in the distance than in the foreground. Hence, the distance of the marker to the center of the 

image can be expressed as: 

 

 

 

Here d is the true distance from 

the camera to the object the laser 

shines on, and 1  and 2  are 

learned parameters to be 

determined by our learning 

algorithm. 

 

The experiment we carried out 

was very simple: by bringing the 

laser marker into the field of 

view of the camera, image 

subtraction can be used on two 

images of the same scene (laser 

on/laser off) to determine the 

approximate pixel-position of 

the laser in the image. Our setup 

for this experiment included one 

camera (Canon sub-SLR, 7 MP, 

12x physical zoom) and one 

(green) laser pointer. Both 

camera and laser were fixed to a 

wooden plank and placed on a 

rolling cart. On each experiment 

conducted, a fixed target was 

chosen such that there was 

ample range of motion away 

from this target while 

maintaining equivalent lighting 

conditions. 

 

Testing was conducted inside 

for optimal lighting conditions 

and, once this proved promising, 

we moved outdoors to produce a 

training set. In this outdoor 
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location, the laser pointer was projected onto an office chair placed between 6 and 200 ft away 

from the camera-laser setup at 3ft intervals (the camera and laser were held fixed and the chair 

was moved to ensure fixed alignment between the laser and camera). The camera was set at its 

highest physical zoom level (12x). Figure 2 shows the training set produced using this procedure. 

The data was fit using the above model utilizing the least-squares method. Least squares 

guarantees the best fit in the sense that the error will be minimized. Because we could infer the 

model from our experimental setup, we are confident that this model gives accurate results for 

regions not explored by the training set. 

 

Several distances were then chosen at random and utilized as a testing set. For the test set several 

different types of materials were used as targets, with varying texture, color, and reflectivity. The 

error produced by the test set (figure 3) is very reasonable for values up to 160ft.  

 

Part II – Fringe-Projection System 

 

Our goal for the second part was to develop a system that could determine absolute range on all 

points in an image at or near real-time speeds. The work done by Zhang provided just what we 

were looking for, as he has demonstrated a system which maps 2D into 3D data in real time. This 

system uses a fast camera with synced DLP projector to obtain three pictures of the same image 

with three sinusoidal fringe patterns projected onto it by the DLP projector. We used three fringe 

patterns, each offset by 120 degrees: 

 

 

 

 

 

 

The parameters α and β are fixed coefficients that represent the average intensity and intensity 

modulation, respectively. Once the fringes-projected images are captured, the effective phase 

map can be retrieved as: 

 

 

 

Phase unwrapping is then used to obtain range measurements for each pixel in the image. We 

were able to reproduce this simple system using a DLP projector and camera. We obtained three 

fringe-projected images and used these to obtain a phase map (figure 4). From here we knew that 

phase unwrapping software is readily available to perform the phase-map to range-map 

transformation. 

 

One drawback that became evident during the testing process is that Zhang et al only use their 

system in optimal conditions (e.g. a very dark room) so that the light from the DLP projector 

alone provides a high enough SNR for the fringe patterns to be easily captured on camera. As our 

main project aim was to produce a range detection system for STAIR, we obviously needed 

something that could work in sub-optimal lighting conditions (e.g. fluorescent lighting or, at 

worst, sunlight). We tested the same system in sub-optimal lighting conditions and, as expected, 

received much worse results (see figure 5a).  
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DLP projector in darkness 

              Figure 4 

 

In order to raise the SNR to an adequate level we 

simply needed to produce more light in order to 

overcome sources like fluorescent lighting and 

sunlight. Several methods were discussed, 

including retrofitting a DLP projector with a 

stronger light source or moving to the near infrared 

spectrum (non-overlapping with sunlight). The 

latter idea received some attention, as Light with at 

1800-1900nm wavelength is absorbed by water 

vapor, so there is almost no background sunlight at 

this wavelength. Likewise florescent, halogen, and 

incandescent lights do not produce light in this area 

of the spectrum. Commercial infrared cameras 

exist that are sensitive to these wavelengths of 

light. Conceptually, a system could operate and not 

disturb surrounding people or have to compete 

with background ambient lighting. While an 

interesting vision, exploration and engineering of 

this concept was not feasible in the time-span 

allotted by this class. 

 

In short, several of these ideas were pursued, but with no engineering success. After running into 

difficulty retrofitting a DLP projector with an alternate light source (halogen, HID, xenon, etc.) 

we decided to try the same idea on an overhead projector, which is much less sophisticated 

technologically. In order to get the maximum light output we used a Nikon SB-600 camera flash 

synced with a Nikon D60 DSLR. A custom opening was made for the flash so that it aligned 

optimally with the mirror beneath the projection screen. A fringe patter was printed on a 

transparency and moved manually for experiments. 

 

Results using this system were an all-around success (figure 5b). Tests in fluorescent lighting 

proved comparable to results for the DLP projector trials in absolute darkness. In addition, its 

power costs are very low compared to the 200W required for a DLP projector, and thus make it 

suitable as an on-board system for robots such as STAIR.  

 

 

 

 

 

 

 

 

 

 

 

Conclusions 
DLP projector in fluorescent light 

                   Figure 5a 

Flash/DSLR in fluorescent light 

                  Figure 5b 



Conclusions 

 

We have made some headway into the problem of reliable absolute range detection for 

autonomous robots. As a first step, we developed a system that reliably predicts the distance of 

one point in an image up to 160 ft away. Next we worked on ways to extend this ability to 

capture absolute range for all pixels in an image. Fringe projection provided the basis for this 

work and we successfully made headway into adapting Zhang and Yau’s fringe-projection 

technique to situations with sub-optimal lighting. 

 

***David and Giancarlo want to thank Morgan and Andrew for their constant support and 

guidance 
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